

1: Please Introduce Yourself : Tutorial
b'Chapter 1: Please Introduce Yourself \xe2\x80\x93 Tutorial'
b'Hello, user'
b'Creating a project in the Firebase console'
b'Scaffolding a Vue.js application'
b'Adding a Bootstrap-powered markup'
b'Making things functional with Vue.js'
b'Deploying your application'
b'Extra mile \xe2\x80\x93 connecting your Firebase project to a custom domain'
b'Summary'

2: Under the Hood : Tutorial Explained
b'Chapter 2: Under the Hood \xe2\x80\x93 Tutorial Explained'
b'Vue.js'
b'Bootstrap'
b'Combining Vue.js and Bootstrap'
b'What is Firebase?'
b'Summary'

3: Let's Get Started
b'Chapter 3: Let's Get Started'
b'Stating the problem'
b'Gathering requirements'
b'Personas'
b'User stories'
b'Retrieving nouns and verbs'
b'Mockups'
b'Summary'

4: Let It Pomodoro!
b'Chapter 4: Let It Pomodoro!'
b'Scaffolding the application'
b'Defining ProFitOro components'
b'Implementing the Pomodoro timer'
b'Introducing workouts' b'Summary'

5: Configuring Your Pomodoro
b'Chapter 5: Configuring Your Pomodoro' b'Setting
up a Vuex store'
b'Defining actions and mutations'
b'Setting up a Firebase project'
b'Connecting the Vuex store to the Firebase database'
b'Exercise'
b'Summary'

6: Please Authenticate!
b'Chapter 6: Please Authenticate!'
b'AAA explained'
b'How does authentication work with Firebase?'
b'How to connect the Firebase authentication API to a web application'
b'Authenticating to the ProFitOro application'
b'Making the authentication UI great again'

Contents

b'Managing the anonymous user'
b'Personalizing the Pomodoro timer'
b'Updating a user's profile'
b'Summary'

7: Adding a Menu and Routing Functionality Using vue-router and Nuxt.js
b'Chapter 7: Adding a Menu and Routing Functionality Using vue-router and
Nuxt.js'
b'Adding navigation using vue-router'
b'Using Bootstrap navbar for navigation links'
b'Code splitting or lazy loading'
b'Server-side rendering'
b'Nuxt.js'
b'Summary'

8: Let's Collaborate : Adding New Workouts Using Firebase Data Storage and Vue.js
b'Chapter 8: Let's Collaborate \xe2\x80\x93 Adding New Workouts Using Firebase
Data Storage and Vue.js'
b'Creating layouts using Bootstrap classes'
b'Making the footer nice'
b'Storing new workouts using the Firebase real-time database'
b'Storing images using the Firebase data storage'
b'Using a Bootstrap modal to show each workout'
b'It's time to apply some style'
b'Summary'

9: Test Test and Test
b'Chapter 9: Test Test and Test'
b'Why is testing important?'
b'What is Jest?'
b'Getting started with Jest'
b'Testing utility functions'
b'Testing Vuex store with Jest'
b'Making Jest work with Vuex, Nuxt.js, Firebase, and Vue components'
b'Testing Vue components using Jest'
b'Snapshot testing with Jest'
b'Summary'

10: Deploying Using Firebase
b'Chapter 10: Deploying Using Firebase'
b'Deploying from your local machine'
b'Setting up CI/CD using CircleCI'
b'Setting up staging and production environments'
b'What have we achieved?'
b'Summary'

backindex: Appendix A: Index
b'Chapter Appendix A: Index'

Hello, user

Hello dear reader, my name is Olga. Would you like to introduce yourself as well? Open
https://pleaseintroduceyourself.xyz/ and leave a message for me and the other readers.

The page itself doesn't look like anything special. It's just a web page that allows users to write a
message, and then, this message is immediately displayed along with the other users' messages in
a reverse chronological order:

The please introduce yourself page

Do you want to know how long it took me to create this page? It took me around half an hour,
and I am not only talking about writing the HTML markup or reversing the order of the messages
but also about the database setup, deployment, and hosting.

You probably noticed that the very first message never changes, and it's actually my message
where I wrote that I love to learn and teach. This is indeed true. That's why I will devote this
chapter to teaching you how to create the exact same page in just 15 minutes. Are you ready?
Let's go!

Chapter 1. Please Introduce Yourself – Tutorial

[1]

https://pleaseintroduceyourself.xyz/

Creating a project in the Firebase console

If you still don't have a Google account but you really want to continue with this tutorial, then
well, I am really sorry, but you will have to create one this time. Firebase is a service powered by
Google, so a Google account is more than required.

If you already have your account, log in to the Firebase console:

https://console.firebase.google.com/.

Let's start by creating your new Firebase project. Click on the Add project button. Give it a
meaningful name and select your country from the list. Once you are done, click on CREATE
PROJECT:

Create a project using the Firebase console

You're done! Now, you can use the Firebase-powered backend for your application, including a
real-time database, authentication mechanism, hosting, and analytics.

Adding a first entry to the Firebase application database

[2]

https://console.firebase.google.com/

Let's add the first database entry. Click on the Database tab on the left-hand side. You should
see a dashboard similar to this one:

Real-time database on the Firebase project dashboard

Let's add an entry called messages and the very first message as a key-value object containing
title, text, and

[3]

Scaffolding a Vue.js application

In this section, we will create a Vue.js application and connect it to the Firebase project that we
created in the previous step. Make sure you have Node.js installed on your system.

You must also install Vue.js. Check out the instructions page from the official Vue
documentation at https://vuejs.org/v2/guide/installation.html. Alternatively, simply run the npm
install command:

$ npm install -g vue-cli

Now, everything is ready to start scaffolding our application. Go to the folder where you want
your application to reside and type the following line of code:

vue init webpack please-introduce-yourself

It will ask you several questions. Just choose the default answer and hit Enter for each of them.
After the initialization, you are ready to install and run your application:

cd please-introduce-yourself

npm install

npm run dev

If everything is fine, the following page will automatically open in your default browser:

[4]

https://vuejs.org/v2/guide/installation.html

Default Vue.js application after installing and running

If not, check the Vue.js official installation page again.

Connecting the Vue.js application to the Firebase project

To be able to

[5]

Adding a Bootstrap-powered markup

Let's add basic styling to our application by adding Bootstrap and using its classes.

First of all, let's include Bootstrap's CSS and JS files from Bootstrap's CDN. We will use the
upcoming version 4, which is still in alpha. Open the index.html file and add the necessary link
and script tags inside the <head> section:

//index.html

<link

rel="stylesheet"

href="https://maxcdn.bootstrapcdn.com/bootstrap/4.0.0-

alpha.6/css/bootstrap.min.css"crossorigin="anonymous">

<script src="https://code.jquery.com/jquery-3.2.1.min.js"crossorigin="anonymous"></script>

<script src="https://npmcdn.com/tether@1.2.4/dist/js/tether.min.js">

</script>

<script src="https://maxcdn.bootstrapcdn.com/bootstrap/4.0.0-

alpha.6/js/bootstrap.min.js"crossorigin="anonymous">

</script>

You've probably noticed that I added jQuery and Tether dependencies as well; this is because
Bootstrap depends on them.

Now, we can use Bootstrap classes and components in our application. Let's start by adding a bit
of styling using Bootstrap's classes.

I will wrap the whole app div tag into the jumbotron class, and then, I will wrap the content of it...

[6]

Making things functional with Vue.js

So, what do we want to achieve with our form? We want the new message to be created. This
message has to be composed of title, text, and the timestamp. We also want to add this message
to our messages reference array.

Let's call this new message newMessage and add it to the data attributes of App.vue:

//App.vue

<script>

 <...>

 export default {

 data () {

 return {

 newMessage: {

 title: '',

 text: '',

 timestamp: null

 }

 }

 },

 <...>

 }

</script>

Now, let's bind the title and the text of this newMessage object to input and textarea of our form.
Let's also bind a method called addMessage to the submit handler of our form so that the whole
form's markup looks like this:

<template>

<...>

 <form @submit="addMessage">

 <div class="form-group">

 <input class="form-control"v-model="newMessage.title"maxlength="40"autofocus placeholder="Please

introduce yourself :)" />

 </div>

 <div class="form-group">

 <textarea class="form-control"v-model="newMessage.text" placeholder="Leave your message!"

rows="3"></textarea>

 ...

[7]

Deploying your application

Well, now that we have a fully working application in our hands, it's time to make it public. In
order to do this, we will deploy it to Firebase.

Start by installing Firebase tools:

npm install -g firebase-tools

Now, you have to tell your Firebase tools that you are actually a Firebase user who has an
account. For this, you have to log in using Firebase tools. Run the following command:

firebase login

Follow the instructions to log in.

Now, you must initialize Firebase in your application. From the application root, call the
following:

firebaseinit

You will be asked some questions. Select the third option for the first question:

Select the Hosting option for the first question

Select the PleaseIntroduceYourself project from the list of projects to associate to the application.

Initialization is over. Check whether the file called firebase.json has been created in the project's
folder. This file can contain an innumerous number of configurations. Check out the official
Firebase documentation in this regard at https://firebase.google.com/docs/hosting/full-config. For
us, the very basic indication of the public...

[8]

https://firebase.google.com/docs/hosting/full-config

Extra mile – connecting your Firebase project to a
custom domain

It's fairly easy to connect the Firebase project to a custom domain. First of all, of course, you
need to buy this domain. For this application, I bought the pleaseintroduceyourself domain with
the cheapest top-level domain, .xyz. It cost me a bit more than a dollar per year on GoDaddy
(https://godaddy.com). After you have your domain, it's really easy. Go to the Firebase web
console of the project. Click on the Hosting tab on the left-hand side. Then, click on the
CONNECT DOMAIN button:

Click on the CONNECT DOMAIN button

In the popup, input your domain name:

[9]

https://godaddy.com

Input your domain name

It will suggest that you add a TXT DNS record to your domain. Just open your DNS provider
page, select your domain, find out how to add DNS records, and add the record with the TXT type.
In my case, with GoDaddy, the record adding section looks like this:

Adding the DNS TXT record to our domain

After the handshake is established (mind, it might take some time), Firebase will propose you the
final step—adding the A record to your domain. Follow the exact same procedure as in the
previous...

[10]

Summary

In this chapter, we followed a tutorial where we have developed a single-page application from
scratch. We used the Vue.js framework to structure our application, the Bootstrap framework to
apply style to it, and the Firebase platform to manage the application's persistence layer and
hosting.

In spite of being able to achieve a considerable result (a fully functional deployed application),
we did everything without a deep understanding of what is going on behind the scenes. The
tutorial didn't explain what Vue.js, Bootstrap, or Firebase was. We just took it for granted.

In the next chapter, we will understand the underlying technologies in detail. We will do the
following:

Take a closer look at the Vue.js framework, starting from a basic understanding and then
covering topics such as directives, data binding, components, routing, and so on

Have a deeper look at the Bootstrap framework, and check what is possible to achieve
using it and how to do it

Get to know the Firebase platform better; we'll gain some basic understanding about it and
go through more complex topics such as data storage or functions

Check out different...

[11]

Chapter 2. Under the Hood – Tutorial Explained
In the previous chapter, we built a simple single-page application from scratch. We used Vue.js
to implement the application's functionality, Bootstrap to make it beautiful, and Firebase to
manage the backend part of the application.

In this chapter, we will get to know all these technologies in depth and see how and why they can
work nicely together. We will mostly discuss Vue.js since this will be our number one
framework to build our application. Then, we will touch on Bootstrap and Firebase to get a basic
understanding of how powerful these technologies are. Having said that, in this chapter we will:

Discuss the Vue.js framework, reactivity, and data binding. Not only will we cover Vue.js'
basics, but we will also dig into topics such as directives, components, routing, and so on.

Discuss the Bootstrap framework. We will see what is possible to achieve with it, discuss
how it can be useful to lay out an application, and discuss how its components can enrich
your application with useful self-contained functionality.

Discuss the Firebase platform. We will see what it is, what...

[12]

Vue.js

The official Vue.js website suggests that Vue is a progressive JavaScript framework:

Screenshot from the official Vue.js website

What does that mean? In a very simplified way, I can describe Vue.js as a JavaScript framework
that brings reactivity to web applications.

It's undeniable that each and every application has some data and some interface. Somehow, the
interface is responsible for displaying data. Data might or might not change during runtime. The
interface usually has to react somehow to those changes. The interface might or might not have
some interactive elements that might or might not be used by the application's users. Data usually
has to react to those interactions, and consequently, other interface elements have to react to the
changes that have been done to the data. All of this sounds complex. Part of this complex
architecture can be implemented on the backend side, closer to where data resides; the other part
of it might be implemented on the frontend side, closer to the interface.

Vue.js allows us to simply bind data to the interface and relax. All the reactions that must happen
between data and the...

[13]

Bootstrap

Now that we know almost everything about Vue.js, let's talk about Bootstrap. Check out the
official Bootstrap page at https://v4-alpha.getbootstrap.com/.

Bootstrap—framework for responsive projects

In a nutshell, Bootstrap gives you a broad set of classes that allow building nearly everything
with any layout in an easy and effortless way.

Bootstrap provides with you four most important things:

Easy layouts building at https://v4-alpha.getbootstrap.com/layout/overview/

Broad range of classes to style nearly any web element at https://v4-
alpha.getbootstrap.com/content/

Self-contained components such as alerts, budges, modals, and so on at https://v4-
alpha.getbootstrap.com/components/

Some utilities for styling images, figures, for positioning, styling, and adding borders at
https://v4-alpha.getbootstrap.com/utilities/

How to install Bootstrap? It can be installed from the CDN:

<link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/bootstrap/4.0.0-

alpha.6/css/bootstrap.min.css" integrity="sha384-

rwoIResjU2yc3z8GV/NPeZWAv56rSmLldC3R/AZzGRnGxQQKnKkoFVhFQhNUwEyJ" crossorigin="anonymous">

<script...

[14]

https://v4-alpha.getbootstrap.com/
https://v4-alpha.getbootstrap.com/layout/overview/
https://v4-alpha.getbootstrap.com/content/
https://v4-alpha.getbootstrap.com/components/
https://v4-alpha.getbootstrap.com/utilities/

Combining Vue.js and Bootstrap

When we were talking about Vue, we devoted a big section to its components. When we talked
about Bootstrap, we also talked about components. Doesn't it ring the same bell? Maybe we
could create Vue components out of Bootstrap components? Maybe we can! Actually, we have
already done it! Open the code of the first chapter's PleaseIntroduceYourself application. Check
what we have inside the components folder. There's something that we called MessageCard.vue.
Actually, this is an implemented Vue component for Card Bootstrap's component (https://v4-
alpha.getbootstrap.com/components/card/)!

Open the example13-vue-bootstrap-components-started/components folder. Let's use this project as a
playground to create the Vue component based on the Bootstrap alert component. Run npm install
and run:

cd example13-vue-bootstrap-components-started/components

npm install

npm run dev

Let's create a Vue component called Alert. This component will contain the necessary code to
simulate Bootstrap's alert component behavior.

Create a file named Alert.vue inside the components folder and add template tags. Our alert will...

[15]

https://v4-alpha.getbootstrap.com/components/card/

What is Firebase?

To understand what is Firebase let's open its website https://firebase.google.com/. This is what
we see:

Google Firebase landing page

Firebase for Google is yet another cloud service, like AWS for Amazon or Azure for Microsoft,
a bit simpler though, because Google already has Google Cloud Platform, which is huge.

If you feel like you want to choose between Firebase and AWS, do not forget that you will most
likely Google it. In any case, someone has already done this for you so here you have this
question on Quora at https://www.quora.com/Which-is-better-cloud-server-Amazon-AWS-or-
Firebase.

I would say that it's more similar to Heroku—it allows you to easily deploy your applications and
integrate them with analytics tools. If you have read the Learning Vue.js 2 book
(https://www.packtpub.com/web-development/learning-vuejs-2), then you already know how
much I love Heroku. I even have Heroku socks!

[16]

https://firebase.google.com/
https://www.quora.com/Which-is-better-cloud-server-Amazon-AWS-or-Firebase
https://www.packtpub.com/web-development/learning-vuejs-2

My beautiful Heroku socks

However, I find Google Firebase console also quite nice and simple to use. It also provides a
backend as a service. This backend is shared for your web and mobile applications, which comes
as a huge...

[17]

Summary

In this chapter, we familiarized ourselves with Vue.js, Bootstrap and Firebase. We have also
analyzed tools that integrate Vue.js with Bootstrap and Vue.js with Firebase.

Thus, now, we are familiar with Vue.js applications that are built using single-file components,
Bootstrap's grid system, components, and CSS helpers to make our lives easier and to make
Google Firebase console with its possibilities.

Also, we know how to initialize Vue.js project, and use Vue directives, components, store and
routing.

You also learned how to leverage Bootstrap's grid system to achieve the responsibility of our
application's layout.

And last but not least, you learned how to use the Firebase API within the Vue application using
vuefire bindings.

With the end of this chapter, the first introduction part of our journey also comes to an end.

In the next chapter, we will actually dive deep inside the implementation. As a scuba diving tank,
we will take everything that you have learned so far!

So, we will start developing the application that we will build during the whole book until it's
ready for deployment. We will:

Define what the application...

[18]

Chapter 3. Let's Get Started
In the previous chapter, we discussed the three main technologies that we will use throughout
this book to build our application. We explored a lot about Vue.js; we introduced some of the
functionalities of Bootstrap, and we checked what we can achieve using the Google Firebase
console. We know how to start an application from scratch using Vue.js. We know how to make
it beautiful with the help of Bootstrap, and we know how to use Google Firebase to deploy it to
live! What does that mean? It means that we are 100 percent ready to start developing our
application!

Coding an application is a fun, challenging, and exciting process... only if we know what we are
going to code, right? In order to know what we will code, we have to define the concept of the
application, its requirements, and its target users. In this book, we will not go through the whole
process of design building as for this, you have plenty of other books, because it's a big science.

In this book, particularly in this chapter, and before diving into the implementation, we will at
least define a set of personas and user stories. Thus, in...

[19]

Stating the problem

There are many time-management techniques in the world. Several gurus and professionals have
given a great amount of talks on how to effectively manage your time so that you are efficient
and all your KPI values are above any possible benchmarks of productivity. Some of these talks
are really amazing. When it comes to time-management talks, I always suggest Randy Pausch's
talk at https://youtu.be/oTugjssqOT0.

Speaking of time-management techniques, there is one popular technique I particularly like,
which I find very simple to use. It's called Pomodoro
(https://en.wikipedia.org/wiki/Pomodoro_Technique). This technique consists of the following
principles:

You work during a certain period without any interruptions. This period can be 20 to 25
minutes and it's called Pomodoro

After the working Pomodoro, you have a 5 minute break. During this break, you can do
whatever you want—check e-mails, social networks, and so on

After working four Pomodoros with short breaks, you have the right to a longer break that
can last from 10 to 15 minutes

There are numerous implementations of the Pomodoro timer. Some of them allow...

[20]

https://youtu.be/oTugjssqOT0
https://en.wikipedia.org/wiki/Pomodoro_Technique

Gathering requirements

Now that we know what we are going to build, let's define a list of requirements for the
application. The application is all about displaying a timer and displaying workouts. So, let's
define what it must be able to do. Here's my list of functional requirements:

The application should display a countdown timer.

The countdown timer can be from 25 to 0 minutes, from 5 to 0 minutes, or from 10 to 0
minutes.

It shall be possible to start, pause, and stop the timer at any moment of the application's
execution.

The application shall produce some sounds when the time reaches 0 and the next period of
break or the working Pomodoro starts.

The application shall display a workout during the short and long breaks. It shall be
possible to skip the current workout and switch to the next one. It shall also be possible to
skip workouts completely during a break and just stare at kittens. It shall also be possible
to mark the given workout as done.

The application must offer an authentication mechanism. Authenticated users can
configure the Pomodoro timer, add new workouts to the system, and visualize their
statistics.

Statistics...

[21]

Personas

Usually, before developing an application we have to define its target users. For this, multiple
questionnaires are conducted with the potential users of the application. The questionnaires
usually include questions about the user's personal data, such as age, sex and so on. There should
also be questions about the user's usage patterns—operating system, desktop or mobile, and so
on. And of course, there should be questions about the application itself. For example, for the
ProFitOro application, we could ask the following questions:

How many hours per day do you spend in the office?

For how long do you sit in the office during your working day?

How often do you do sport activities such as jogging, fitness workouts, and so on?

Do you work from the office or from home?

Is there any area in your work place where you could do push-ups?

Do you have problems with your back?

After all questionnaires are collected, the users are divided into categories by similar patterns and
personal data. After that, each user's category forms one single persona. I will leave here four
personas for the ProFitOro application.

Let's start with a...

[22]

User stories

After we've defined our users, let's write some user stories. When it comes to writing user stories,
I just close my eyes and imagine that I am this person. Let's try out this mind exercise starting
with Dwart Azevedo:

Dwart Azevedo

Dwart's working day consists of meetings, calls, video conferences, and paperwork. Today, he
was really busy with interviews and meetings. Finally, he got a few hours for his paperwork that
has been waiting for him for the whole week. Dwart wants to spend these hours in the most
productive way. He opens the ProFitOro application, clicks on start, and starts working. After his
paperwork is done, he clicks on stop, checks his statistics in ProFitOro, and feels happy. Even
though his working time consisted of two hours only, he was able to finish everything he planned
to finish.

Thus, we can come up with a formal user story like this:

As an authenticated user, I would like to check out my statistics page at ProFitOro in order to
see the completeness of my working day.

Let's move on to our fitness instructor, Steve Wilson.

Steve Wilson

Steve is a fitness instructor. He knows everything about...

[23]

Retrieving nouns and verbs

Retrieving nouns and verbs from the user stories is a very fun task that helps you realize what
parts your application consists of. For those who like Unified Modeling Language (UML), after
you retrieve the nouns and verbs from your user stories, you'll have the classes and entity-
relationship diagrams almost done! Do not underestimate the number of nouns and verbs to
retrieve. Write them all down—literally! You can remove the words that don't make sense after.
So, let's do it.

Nouns

The nouns that I was able to retrieve out of my user stories are the following:

Working day

Meeting

Call

Interview

Hour

Day

Week

Application

Statistics

Working time

Plan

Fitness

Instructor

Human body

Nutrition

Workout

[24]

Section

Exercise

E-mail

Data

Page

Registration

Verbs

The verbs that I was able to retrieve from the user stories are the following:

Consist

Be busy

Open

Spend time

Start

Pause

Stop

Check

Finish

Plan

Add

Create

Register

Authenticate

Login

Concentrate

The fact that we have verbs such as register, login, and authenticate and nouns such as e-mail,

and registration mean that the application will probably be used with and without registration.
This means...

[25]

Mockups

Now that we have all our nouns and verbs, we can start making connections between all the
sections of our application. We can actually start preparing some mockups. Sit down with
someone, discuss, explain your idea, and collect feedback. Ask questions. Answer questions. Use
a whiteboard, use post-its. Use paper: draw, discard, and redraw again.

I have a good friend called Safura. She is a working student currently studying computer science
in Berlin, and we work together in the same team. She is interested in the UI/UX topic. Actually,
she will write her master's thesis in the Human-Computer Interaction (HCI) area. So, we sat
together, and I explained the idea of ProFitOro to her. You cannot imagine the number of
questions she asked. Then, we started to draw. And to redraw. "And what if….?" redraw again.

This is how the first mockups on paper looked:

[26]

[27]

The first mockups on paper for the ProFitOro application

After all the brainstorming and drawing and redrawing, Safura prepared some nice mockups for
me. She used WireframeSketcher for this purpose (http://wireframesketcher.com/).

The first page – login and register

The very...

[28]

http://wireframesketcher.com/

Summary

In this chapter, we applied the very basic principles of designing an application's user interface.
We brainstormed, defined our personas and wrote user stories, retrieved nouns and verbs from
these stories, and ended up with some nice mockups for our application.

In the next chapter, we will start implementing our ProFitOro. We will use Vue.js to scaffold the
application and split it into important components. Thus, in the next chapter we will do the
following:

Scaffold the ProFitOro application using vue-cli with the webpack template

Split the application into the components and create all the necessary components for the
application

Implement a basic Pomodoro timer using Vue.js and Bootstrap

[29]

Chapter 4. Let It Pomodoro!
The previous chapter ended with a nice set of mockups for the ProFitOro application. We have
previously defined what the application should do; we have also determined an average user
profile, and we are ready to implement it. In this chapter, we will finally start coding. So, in this
chapter, we will do the following:

Scaffold ProFitOro using vue-cli with the webpack template

Define all the needed application's components

Create placeholders for all the components

Implement a component that will be responsible for rendering the Pomodoro timer using
Vue.js and Bootstrap

Revisit the basics of trigonometric functions (you were not expecting that, right?)

[30]

Scaffolding the application

Before everything, let's make sure that we are on the same page, at least regarding the node
version. The version of Node.js I'm using is 6.11.1.

Let's start by creating a skeleton for our application. We will use vue-cli with the webpack
template. If you don't remember what vue-cli is about and where it comes from, check the
official Vue documentation in this regard at https://github.com/vuejs/vue-cli. If for some reason
you still haven't installed it, proceed with its installation:

npm install -g vue-cli

Now, let's bootstrap our application. I'm sure you remember that, in order to initialize the
application with vue-cli, you must run the vue init command followed by the name of the
template to be used and the name of the project itself. We are going to use the webpack template,
and our application's name is profitoro. So, let's initialize it:

vue init webpack profitoro

During the initialization process you will be asked some questions. Just keep hitting Enter to
answer the default Yes to all of them; Yes because for this application we will need everything:
linters, vue-router, unit testing,...

[31]

https://github.com/vuejs/vue-cli

Defining ProFitOro components

Our application consists of two main screens.

One of the screens is the so-called Landing page; this page consists of the following parts:

A logo

A tagline

An authentication section

A link to the application to be used without being registered

Schematically, this is how our components are positioned on the screen:

Landing page that contains logo, tagline, authentication section, and a link to the application

The second screen is the main application screen. This screen contains three parts:

A header

[32]

A footer

The content

The content part contains the Pomodoro timer. If the user is authenticated, it will contain
settings, workouts, and statistics as well:

Main application's screen that contains header, footer, and content

Let's create a folder called components and subfolders called main, landing, and common for the
corresponding sub-components.

Components for the landing and main pages will reside in the components folder; the remaining 11
components will be distributed between the respective subfolders.

For each defined component file, add the template, script, and style sections. Add the lang="sass"
attribute to...

[33]

Implementing the Pomodoro timer

One of the most important components of our application is, without any doubt, the Pomodoro
timer. It performs the main functionality of the application. So, it might be a good idea to
implement it in the first place.

I am thinking of some kind of a circular timer. Something like this:

Circular timer to be implemented as a Pomodoro timer

As time passes, the highlighted sector will move counterclockwise and the time will count down
as well. To implement this kind of structure, I am thinking of three components:

SvgCircleSector: This component will just receive an angle as a property and color the
corresponding sector of the SVG circle.

CountDownTimer: This component will receive the number of seconds to countdown,
implement the timer and calculate the angle to pass to the SvgCircularComponent on each timer
update.

PomodoroTimer: We have already bootstrapped this component. This component will be
responsible to call the CountDownTimer component with the initial time and update it to the
corresponding number of seconds depending on the current working Pomodoro or break
interval.

SVG and trigonometry

Let's...

[34]

Introducing workouts

I have been so enthusiastic writing this chapter, calculating sine, cosine, drawing SVG,
implementing a timer, and taking care of the inactive tabs and stuff that I almost forgot to do my
workout! I like planks and pushups, what about you? By the way, haven't you also forgotten that
workouts are a part of our application? During the breaks, we are supposed to do simple
exercises and not just check our social networks!

We will implement full-fledged workouts and their management in the next chapters; for now,
let's just leave a nice placeholder for the workout and hard code one exercise in this placeholder
(I vote for pushups since the book is mine, but you can add the workout or exercise of your own
preference). Open the PomodoroTimer.vue component and wrap up a countdown component into a
div with a class row. We will make this row contain two columns, one of which will be the
countdown timer, and the other is a conditionally rendered element containing a workout. Why
conditionally? Because we only need this element displayed during the Pomodoro breaks. We
will use the v-show directive so that the containing...

[35]

Summary

In this chapter, we have done a lot of things. We have implemented the main functionality of our
Pomodoro timer, and now it is fully functional, configurable, usable, and responsive. We
bootstrapped our ProFitOro application, separated it into components, created a skeleton for each
of the defined components, and fully implemented one of them. We even revisited some
trigonometry, because math is everywhere. We implemented our timer and we made it work,
even on the hidden and inactive tabs. We made the application responsive and adaptive to
different device sizes using the powerful Bootstrap layout classes. Our application is functional,
but it is far from beautiful. Don't mind these shades of gray though; let's stick to them for now. In
the end of the book, you will get your beautiful ProFitOro styles, I promise you!

We are ready to continue our journey in the world of technology. In the next chapter, we will
learn how to configure our Pomodoro and how to store the configuration and usage statistics
using Firebase. Thus, in the next chapter we will:

Get back to Vuex centralized state management architecture and combine it...

[36]

Chapter 5. Configuring Your Pomodoro
In the previous chapter, we implemented the main feature of our ProFitOro application – the
Pomodoro timer. We even added a hardcoded workout, so we can exercise during our breaks.
Actually, I already started using ProFitOro. While I'm writing these words, the Pomodoro clock
counts down – tick tick tick tick.

In this chapter, we are going to explore the Firebase Realtime Database's possibilities and its
API. We are going to manage storing, retrieving, and updating usage statistics and configuration
of our application. We will use the Vuex store to bring the application's data from the database to
the frontend application.

To bring this possibility to the UI, we will use Vue's reactivity combined with the power of
Bootstrap. Thus, in this chapter we are going to implement the statistics and settings ProFitOro
components using:

Firebase Realtime Database

Vue.js reactive data bindings and Vuex state management

The power of Bootstrap to make things responsive

[37]

Setting up a Vuex store

Before starting with real data from the database, let's set up the Vuex store for our ProFitOro. We
will use it to manage the Pomodoro timer configuration, user settings, such as the username, and
a profile picture URL. We will also use it to store and retrieve the application's usage statistics.

From Chapter 2, Hello User Explained, you already know how the Vuex store works. We must
define data that will represent the application's state and then we must provide all the needed
getters to get the data and all the needed mutations to update the data. Once all this is set, we will
be able to access this data from the components.

After the application's store is ready and set up, we can connect it to the real-time database and
slightly adjust the getters and mutations to operate the real data.

First of all, we need to tell our application that it will use the Vuex store. To do that, let's add the
npm dependency for vuex:

npm install vuex --save

Now, we need to define a basic structure of our store. Our Vuex store will contain the following:

State: The initial state of the application's data.

Getters: Methods

[38]

Defining actions and mutations

It's great that our components can now get data from the store, but it would be probably even
more interesting if our components were also able to change the data in the store. On the other
hand, we all know that we cannot modify the store's state directly.

The state should not be touched by any of the components. However, you also remember from
our chapter about the Vuex store that there are special functions that can mutate the store. They
are even called mutations. These functions can do whatever they/you want with the Vuex store
data. These mutations can be called using the commit method applied to the store. Under the hood,
they essentially receive two parameters – the state and the value.

I will define three mutations – one for each of the timer's definitions. These mutations will
update the corresponding attribute of the config object with a new value. Thus, my mutations look
as follows:

//store/mutations.js

export default {

 setWorkingPomodoro (state, workingPomodoro) {

 state.config.workingPomodoro = workingPomodoro

 },

 setShortBreak (state, shortBreak) {

 state.config.shortBreak...

[39]

Setting up a Firebase project

I hope that you still remember how to set up Firebase projects from the first chapters of this
book. Open your Firebase console at https://console.firebase.google.com, click on the Add
project button, name it, and choose your country. The Firebase project is ready. Wasn't that
easy? Let's now prepare our database. The following data will be stored in it:

Configuration: The configuration of our Pomodoro timer values

Statistics: Statistical data of the Pomodoro usage

Each of these objects will be accessible via a special key that will correspond to a user's ID; this
is because, in the next chapter, we are going to implement an authentication mechanism.

The configuration object will contain values – workingPomodoro, longBreak and shortBreak – that are
already familiar to us.

Let's add a configuration object to our database with some fake data:

{

 "configuration": {

 "test": {

 "workingPomodoro": 25,

 "shortBreak": 5,

 "longBreak": 10

 }

 }

}

You can even create this as a simple JSON file and import it to your database:

[40]

https://console.firebase.google.com

Import JSON file to your real-time Firebase...

[41]

Connecting the Vuex store to the Firebase database

So, now we have to connect our Vuex store to the Firebase database. We could use the native
Firebase API for binding the state data to the database data, but why would we deal with
promises and stuff if someone already did that for us? This someone is called Eduardo and he has
created Vuexfire – Firebase bindings for Vuex (https://github.com/posva/vuexfire). If you were
at the vueconf2017 conference in Wroclaw, you probably remember this guy:

Eduardo talking about Vue and Firebase during the Vue conference

Vuexfire comes with Firebase mutations and actions that will do all the behind the scenes jobs
for you, while you just export them within your mutations and actions objects. So, to start with,
install both firebase and vuexfire:

npm install vue firebase vuexfire –save

Import firebase and firebaseMutations in your store's index.js entry point:

//store/index.js

import firebase from 'firebase'

import { firebaseMutations } from 'vuexfire'

Now, we need to obtain the reference to the Firebase application. Firebase comes with an
initialization method, initializeApp, which receives an...

[42]

https://github.com/posva/vuexfire

Exercise

You have learned how to connect the real-time Firebase database to your Vue application and
used this knowledge to update the configurations for Pomodoro timers. Now, apply your
knowledge to the statistics area. For the sake of simplicity, just display the total amount of
Pomodoros executed since the user started using the application. For that you will need to do the
following:

1. Add another object called statistics containing the totalPomodoros attribute that initially
equals 0 in your Firebase database.

2. Create an entry in the store's state to hold the statistics data.

3. Map totalPomodoros of the statistics state's object to the Firebase reference using the
firebaseAction enhancer and the bindFirebaseRef method.

4. Create an action that will update the totalPomodoros reference.

5. Call this action whenever it has to be called inside the PomodoroTimer component.

6. Display this value inside the Statistics.vue component.

Try to do it yourself. It shouldn't be difficult. Follow the same logic we applied in the Settings.vue
component. If in doubt, check the chapter5/4/profitoro folder, particularly the store's files –
index.js, state.js

[43]

Summary

In this chapter, you learned how to use the real-time Firebase database with the Vue application.
You learned how to use Vuexfire and its methods to correctly bind our Vuex store state to the
database reference. We were not only able to read and render the data from the database but we
were also able to update it. So, in this chapter, we saw Vuex, Firebase, and Vuexfire in action. I
guess we should be proud of ourselves.

However, let's not forget that we have used a hardcoded user ID in order to get the user's data.
Also, we had to expose our database to the world by changing the security rules, which doesn't
seem right either. It seems that it's time to enable the authentication mechanism!

And we will do it in the next chapter! In the next chapter, we are going to learn how to set up the
authentication mechanism using the Firebase authentication framework. We will learn how to
use it in our application using Vuefire (Firebase bindings for Vue:
https://github.com/vuejs/vuefire). We will also implement the very initial view of our application
responsible for providing a way of registering and performing the login. We will...

[44]

https://github.com/vuejs/vuefire

Chapter 6. Please Authenticate!
In the previous chapter, we connected our ProFitOro application to the real-time database.
Whenever a user updates the Pomodoro timer settings, these are stored in the database and
immediately propagated between the components that use them. Since we had no authentication
mechanism, we had to use a fake user in order to be able to test our changes. In this chapter, we
are going to have real users!

We will use the Firebase authentication API in this regard. So in this chapter, we are going to do
the following:

Discuss the meaning of AAA and the difference between authentication and authorization

Explore the Firebase authentication API

Create a page for sign-in and login, and connect it with the Firebase authentication API

Connect the user's settings with the user's authentication

[45]

AAA explained

Triple-A, or AAA, stands for Authentication, Authorization, and Accounting. Initially, this
term was invented as a term to describe the security network protocol; however, it can be easily
applied to any system, web resource, or site.

So, what does AAA mean and why should we bother?

Authentication is the process of uniquely identifying the users of a system. An authenticated
user is a user whose access to a system is granted. Usually, the authentication is done via some
username and password. When you have to provide your username and password to open your
Facebook page, you are authenticating yourself.

Your passport is a way of authenticating yourself at the airport. The passport control agent will
look at your face and then check your passport. So anything that allows you to pass is a part of
your authentication. It can be a special word (password) that is only known by you and the
system or it can be something that you port (passport) with you that can help the system to
uniquely identify you.

Authorization is a way to control what resources each user has rights (permissions) to access. If
you are developing...

[46]

How does authentication work with Firebase?

In the previous chapter, you learned how to use the Firebase API to create a Firebase application
instance and use it through your application. We were able to access the database, read it, and
store data in it.

The way you work with the Firebase authentication API is very similar. You create a Firebase
instance, providing a config object to it, and you use the firebase.auth() method to access different
methods related with the authentication. Check your Firebase console's Authentication tab:

There are no users yet but we will fix it in a minute!

The Firebase SDK provides several ways for users to authenticate:

Email and password based authentication: The classic way for authenticating users.
Firebase provides a way to sign in users with email/password and log them in. It also
provides methods to reset the user password.

Federated entity provider authentication: The way of authenticating users with an
external entity provider, such as Google, Facebook, Twitter, or GitHub.

Phone number authentication: The way of authenticating users by sending them an SMS
with a code that they will have to...

[47]

How to connect the Firebase authentication API to a
web application

In order to connect your application to the Firebase authentication API, you should start by
creating a Firebase application instance:

let config = {

 apiKey: 'YourAPIKey',

 databaseURL: 'YourDBURL',

 authDomain: 'YourAuthDomain'

}

let app = firebase.initializeApp(config)

You can find the necessary keys and URLs in the popup that opens if you click on the Web
Setup button:

The setup config to use Firebase in a web application

Now you can use the app instance to access the auth() object and its methods. Check out the
official Firebase documentation regarding the authentication API:
https://firebase.google.com/docs/auth/users.

The most important part of the API for us is the methods to create and sign in a user, and the
method that listens to the changes in the authentication state:

[48]

https://firebase.google.com/docs/auth/users

app.auth().createUserWithEmailAndPassword(email, password)

Or:

app.auth().signInWithEmailAndPassword(email, password)

The method that listens to the changes in the authentication state of the application is called
onAuthStateChanged. You can set the important properties inside of this method...

[49]

Authenticating to the ProFitOro application

Let us now make signing in and logging in to our ProFitOro application possible! First, we have
to set up the Firebase instance and figure out where we should put all the methods related to
authentication. The Firebase application initialization has already been done inside the
store/index.js file. Just add the apiKey and authDomain configuration entries if you still do not have
them included in the config:

// store/index.js

let config = {

 apiKey: 'YourAPIKey',

 databaseURL: 'https://profitoro-ad0f0.firebaseio.com',

 authDomain: 'profitoro-ad0f0.firebaseapp.com'

}

let firebaseApp = firebase.initializeApp(config)

I will also export firebaseApp within the store's state property using the spread … operator:

//store/index.js

export default new Vuex.Store({

 state: {

 ...state,

 firebaseApp

 },

 <...>

})

I will also add a user property to our state so we can reset it on the onAuthStateChanged listener's
handler:

// store/state.js

export default {

 config,

 statistics,

 user,

 isAnonymous: false

}

Let us also create a small mutation that will reset the value of the user object to...

[50]

Making the authentication UI great again

We have just implemented the authentication mechanism for our ProFitOro application. That's
great, but the UI of our authentication page looks as if we've used a time machine and gone back
20 years to the early days of the internet. Let's fix it using our powerful friend – Bootstrap.

First of all, I would like to make my landing page layout a two-column grid layout, so the whole
sign-in/login belongs to the left column and the button that leads the user to the application
without being registered stays on the right side. However, I would like these two columns to be
stacked on mobile devices.

This is nothing new for you; I suppose that you remember how to use Bootstrap's grid layout in
order to achieve this behavior: https://v4-alpha.getbootstrap.com/layout/grid/. So, in our
LandingPage component, I will just wrap the authentication and go-to-app-link components into the
div with the row class and add the corresponding col-* classes to these components:

// LandingPage.vue

<template>

 <div>

 <...>

 <div class="container row justify-content-center">

 <div class="col-sm-12 col-md-6...

[51]

https://v4-alpha.getbootstrap.com/layout/grid/

Managing the anonymous user

ProFitOro allows unregistered users to use the application as well. The only difference is that
these unregistered users are not allowed to configure their settings as well, as they do not have
access to their statistical data. They also cannot manage workouts. So, this is where we meet the
second A of the triple-A definition – authorization. How can we manage these users? How can
they actually enter the application if we only allow our users to sign up and log in? Well, for
some reason, we have prepared the part that says Go to App. Let me remind you how it looks in
the mockups:

Start without registration! button in the initial mockups

Luckily for us, the Firebase authentication API provides a method to sign in the anonymous user.
The returned user object contains the isAnonymous attribute, which will allow us to manage the
resources that can or can't be accessible to this anonymous user. So let's add the action called
authenticateAnonymous and call the corresponding Firebase auth method within it:

// store/actions.js

authenticateAnonymous ({state}) {

[52]

 state.firebaseApp.auth().

[53]

Personalizing the Pomodoro timer

Well, now that we can already sign in new users and log in the existing ones, probably we should
think about taking advantage of our authentication mechanism because right now we are actually
not doing anything with it. We just sign up and we just log in. Yes, we also can hide or show
some content based on the user's authentication, but this is not enough. The whole point of all
this effort was to be able to store and retrieve the user's custom configuration for the Pomodoro
timer and the user's statistical data.

Until now, we have been using a hardcoded database object with the key test in order to access
the user's data, but now, since we already have our real users, it's time to populate the database
with real users' data and use it in our application. Actually, the only thing we have to do is to
replace this hardcoded value with the actual user's ID. So, for example, our code to bind the
config reference was looking like this:

// store/actions.js

bindConfig: firebaseAction(({bindFirebaseRef, state}) => {

 if (state.user && !state.isAnonymous) {

 bindFirebaseRef('config', state.configRef)

 ...

[54]

Updating a user's profile

Wouldn't it be funny if we could welcome our user by displaying a welcome message saying
something like Welcome Olga? But our users do not have names; they only have emails and
passwords – two essential authentication components that are passed during the sign-up process.
So, how can we do that? Well, if you have read with some attention the Firebase documentation
regarding authentication (https://firebase.google.com/docs/auth/web/manage-users), you might
have spotted these nice methods:

Firebase methods for updating a user's profile and email address

Let's use these methods to update our user's profile and user's profile picture!

We will define three new actions – one that will update the user's display name by calling the

[55]

https://firebase.google.com/docs/auth/web/manage-users

Firebase updateProfile method, one that will update the user's profile picture's URL by calling the
same method, and another one that will call the updateEmail method. Then we will create the
necessary markup in the Settings.vue component that will bind those actions on the corresponding
input's update. Sounds easy, right? Believe me, it's as easy to implement as it actually...

[56]

Summary

In this chapter, we have learned how to combine the Firebase real-time database and
authentication API to update a user's settings. We have built a user interface that allows a user to
update their profile settings. In just a few minutes, we have built the full authentication and
authorization part of our application. I don't know about you, but I feel totally amazed about it.

In the next chapter, we will finally get rid of this huge page that contains all the parts of our
application – the Pomodoro timer itself, statistics data, and the settings configuration view. We
will explore one really nice and important feature of Vue – vue-router. We will combine it with
Bootstrap's navigation system in order to achieve a nice and smooth navigation. We will also
explore such a hot topic as code splitting in order to achieve lazy loading for our application. So,
let's go!

[57]

Chapter 7. Adding a Menu and Routing Functionality
Using vue-router and Nuxt.js
In the previous chapter, we added a very important feature to our application – authentication.
Now, our users are able to register, log in to the application, and manage their resources once
they are logged in. So, now they can manage the configuration of the Pomodoro timer and their
account's settings. They also have access to their statistics data once they are logged in. We have
learned how to use Firebase's authentication API and connect the Vue application to it. I must
say, the previous chapter has been extensive in learning and a very backend oriented chapter. I
enjoyed it a lot and I hope you enjoyed it as well.

Despite having this complex feature of authentication and authorization, our application still
lacks navigation. For simplicity reasons, we are currently displaying all the application's parts on
the main page. This is… ugly:

Admit it, this is ugly

[58]

In this chapter, we are not going to make things beautiful. What we are going to do is make
things navigable so that all parts of the application are accessible through navigation. We...

[59]

Adding navigation using vue-router

I hope you still remember from the second chapter what vue-router is, what it does, and how it
works. Just to remind you:

Vue-router is the official router for Vue.js. It deeply integrates with Vue.js core to make
building Single Page Applications with Vue.js a breeze.

-(From the official documentation of vue-router)

The vue-router is very easy to use, and we don't need to install anything – it already comes with
the default scaffolding of Vue applications with a webpack template. In a nutshell, if we have
Vue components that should represent the routes, this is what we have to do:

Tell Vue to use vue-router

Create a router instance and map each component to its path

Pass this instance to the options of a Vue instance or component

Render it using the router-view component

Note

Check the official vue-router documentation: https://router.vuejs.org

When you create your router, you should pass the array of routes to it. Each array item represents
the mapping of a given component to some path:

{

 name: 'home',

 component: HomeComponent,

 ...

[60]

https://router.vuejs.org

Using Bootstrap navbar for navigation links

Our current navigation bar is great – it's functional, but not responsive. Luckily for us, Bootstrap
has a navbar component that implements responsiveness and adaptiveness for us. We just have to
wrap our navigation elements with some Bootstrap classes and then sit back and check our
beautiful navigation bar that collapses on mobile devices and expands on desktop devices. Check
Bootstrap's documentation regarding the navb ar component: https://v4-
alpha.getbootstrap.com/components/navbar/.

Note

Keep in mind that this URL is for the alpha version. The next stable version 4 will
be available on the official website.

These are the classes we are going to use to transform our simple navigation bar into a Bootstrap-
managed responsive navigation bar:

navbar: This wraps the whole navigation bar element

navbar-toggleable-*: This should also wrap the whole navigation bar element and will tell it
when to toggle between expanded/collapsed state (for example, navbar-toggleable-md would
make navigation bar collapse on medium-size devices)

navbar-toggler: This is a class for the button that will be...

[61]

https://v4-alpha.getbootstrap.com/components/navbar/

Code splitting or lazy loading

When we build our application to deploy for production, all the JavaScript is bundled into a
unique JavaScript file. It's very handy, because once the browser loads this file, the whole
application is already on the client side and no one is worried about loading more things. Of
course, this is only valid for SPAs.

Our ProFitOro application (at least at this stage) benefits from such bundling behavior – it's
small, it's a single request, everything is in place and we don't need to request anything from the
server for any of the JavaScript files.

However, this kind of bundling might have some downsides. I am pretty sure that you have
already built or have already seen huge JavaScript applications. There'll always be some point
when loading huge bundles will become unbearably slow, especially when we want these apps to
run on both desktop and mobile environments.

An obvious solution for this problem would be to split the code in such a way that different
chunks of code are loaded only when they are needed. This is quite a challenge for single page
applications and this is why we have a huge community...

[62]

Server-side rendering

Server-side rendering (SSR) recently became yet another popular abbreviation in the web
development world. Used in addition to code splitting techniques, it helps you to boost the
performance of your web application. It also positively affects your SEO, since all the content
comes at once, and crawlers are able to see it immediately, contrary to cases where the content is
being built in the browser after the initial request.

I found a great article about SSR that compares server and client side rendering (although it's
from 2012). Check it out: http://openmymind.net/2012/5/30/Client-Side-vs-Server-Side-
Rendering/.

It's fairly easy to bring server-side rendering to your Vue application – check the official
documentation in this regard: https://ssr.vuejs.org.

It is important that our applications are performant; it is also important that SEO works.
However, it is also important not to abuse the tools and not to introduce implementation
overhead and overkill. Do we need SSR for the ProFitOro application? To answer this question
let's think about our content. If there is a lot of content which is being brought...

[63]

http://openmymind.net/2012/5/30/Client-Side-vs-Server-Side-Rendering/
https://ssr.vuejs.org

Nuxt.js

While we were busy defining our router object, router links, code splitting and learning things
about the server-side rendering, someone implemented a way of developing Vue.js applications
without being worried about all these things at all. Just write your code. All the things like
routing, code splitting and even server-side rendering will be handled behind the scenes for you!
If you are wondering what the hell it is, let me introduce you to Nuxt.js: https://nuxtjs.org.

So, what is Nuxt.js?

Nuxt.js is a framework for creating Universal Vue.js Applications.

Its main scope is UI rendering while abstracting away the client/server distribution.

What's so great about it? Nuxt.js introduces the concept of pages – basically, pages are also Vue
components, but each one of the pages represents a route. Once you define your components
inside the pages folder they become routes without any additional configuration.

In this chapter, we will totally migrate our ProFitOro to the Nuxt architecture. So, brace yourself;
we are going to make lots of changes! At the end of the chapter, our efforts will be rewarded
with a piece of nice,...

[64]

https://nuxtjs.org

Summary

In this chapter we have added basic routing to our application using different tools. First, we
learned how to use vue-router to achieve routing functionality and then we used the Nuxt.js
template to build a brand new application using old components and styles. We have used the
concept of pages offered by Nuxt vue in order to achieve the same routing functionality as with
vue-router and have transformed our ProFitOro application into a Nuxt application in an easy and
unobtrusive way. We have significantly reduced the amount of code and learned something new.
Total winners!

In this chapter we have also used Bootstrap's navbar to display our navigation routes in a nice and
responsive way, and learned that even with the most drastic refactoring, the functionality and
responsiveness stays with us when we use the Bootstrap approach. Once again – great success!

Our application is almost fully functional, however, it still lacks its main functionality –
workouts. For now, during the Pomodoro intervals we are showing a hardcoded pushups
workout.

Are you using the ProFitOro application while reading this book? If yes, I guess I...

[65]

Chapter 8. Let's Collaborate – Adding New Workouts
Using Firebase Data Storage and Vue.js
In the previous chapter, we learned how to add some basic navigation to the Vue application
using both vue-router and Nuxt.js. We have redesigned our ProFitOro application, transforming it
into a Nuxt-based application. Now our application is functional, it has an authentication
mechanism, and it is navigable. However, it still lacks one of the most important features –
workouts. In this chapter, we are going to implement the workout management page. Do you still
remember its requirements from Chapter 2, Under the Hood – Tutorial Explained?

This page should allow users to see the existing workouts in the database, select or deselect them
to be shown up during the Pomodoro breaks, rate them, and even add new workouts. We are not
going to implement all these features. However, we are going to implement enough for you to
continue this application and finish its implementation with great success! So, in this chapter we
are going to do the following:

Define a responsive layout for the workout management page, which will consist of two...

[66]

Creating layouts using Bootstrap classes

Before we start implementing a layout for our workouts page, let me remind you what the
mockup looks like:

This is how we have defined things initially in our mockups

We will do some things slightly differently - something similar to what we have done in the
settings page. Let's create the two-column layout that will stack on mobile devices. So, this
mockup will be valid for mobile screens but it will display two columns on desktop devices.

Let's add two components – WorkoutsComponent.vue and NewWorkoutComponent.vue – inside the
components/workouts folder. Add some dummy text to the templates of these new components and
let's define our two-column layout in the workouts.vue page. You certainly remember that in order
to have stack columns on small devices and different-sized columns on other devices, we have to
use the col-*-<number> notation, where * represents the size of the device (sm for small, md for
medium, lg for large, and so on) and the number represents the size of the column, which might
ranges from 1 to 12. Since we want our layout to stack on small devices (this means that...

[67]

Making the footer nice

Aren't you tired of this hardcoded word "Footer" always lying around beneath our content?

The ugly flying hardcoded Footer always glued to our content

Let's do something with it! If you check our mockups, we have three columns there:

One column for the copyright information

Another one for the fact of the day

And the last for the author information

You already know what to do, right? Again, we want these columns to be equally distributed on
mediumand large-sized devices, and stack on mobile devices. Thus, our code will look like this:

// components/common/FooterComponent.vue

<template>

 <div class="footer">

 <div class="container row">

 <div class="copyright col-lg-4 col-md-4 col-sm-12">Copyright</div>

 <div class="fact col-lg-4 col-md-4 col-sm-12">Working out sharpens your memory</div>

 <div class="author col-lg-4 col-md-4 col-sm-12">Workout Lovers</div>

 </div>

 </div>

</template>

Let's keep the fact of the day section hardcoded for now. Well, now our footer looks a bit nicer.
At least it's not just the word "Footer" lying around:

Our footer is not just the word...

[68]

Storing new workouts using the Firebase real-time
database

Before starting this section, check the code in the chapter8/3/profitoro folder. Both the Workouts and
NewWorkout components are filled with a markup.

Note

Don't forget to run npm install and npm run dev!

It doesn't work yet, but it displays something:

Workout management page with some content

In this section, we are going to add workout objects to our workouts resource in the Firebase
database. After that, we can finally learn how to store images using the Firebase data storage
mechanism.

First, let's add Firebase bindings just like we've done for statistics and configuration objects.
Open the action.js file and find the bindFirebaseReferences method. Here, we should add the
binding for the workouts resource. So, this method now contains three bindings:

// state/actions.js

bindFirebaseReferences: firebaseAction(({state, commit, dispatch}, user) => {

 let db = firebaseApp.database()

 let configRef = db.ref(`/configuration/${user.uid}`)

 let statisticsRef = db.ref(`/statistics/${user.uid}`)

 let workoutsRef = db.ref('/workouts')

 dispatch('bindFirebaseReference',...

[69]

Storing images using the Firebase data storage

Firebase cloud storage allows you to upload and retrieve different content (files, videos, images,
and so on). In a very similar way, Firebase provides a way of accessing and managing your
database, where you can access and manage your storage buckets. You can upload Blobs, strings
in Base64, file objects, and so on.

First of all, you should tell your Firebase application that you are going to use Google cloud
storage. Thus, you need to add a storageBucket attribute to your application configuration object.
Check your application's settings on the Google Firebase console and copy the storageBucket
reference to the firebase/index.js file:

// Initialize Firebase

import firebase from 'firebase'

//...

let config = {

 apiKey: 'YOUR_API_KEY',

 databaseURL: 'https://profitoro-ad0f0.firebaseio.com',

 authDomain: 'profitoro-ad0f0.firebaseapp.com',

 storageBucket: 'gs://profitoro-ad0f0.appspot.com'

}

//...

Now your firebase application knows what storage bucket to use. Let's also open the data storage
tab of the Firebase console and add a folder for our workout images. Let's call...

[70]

Using a Bootstrap modal to show each workout

Now we can see all the existing workouts on the page, which is great. However, our users would
really like to have a look at each of the workouts in detail – see the workouts' descriptions, rate
them, see who has created them and when, and so on. It's unthinkable to put all this information
in the tiny card element, so we need to have a way of magnifying each element in order to be able
to see its detailed information. A Bootstrap modal is a great tool that provides this functionality.
Check the Bootstrap documentation regarding the modal API: https://v4-
alpha.getbootstrap.com/components/modal/.

Note

Note that Bootstrap 4, at the time of writing, is in its alpha stage and that's why at
some point this link might not work anymore, so just search for the relevant
information on the official Bootstrap website.

Basically, we need to have an element that will trigger a modal and a modal markup itself. In our
case, each of the small workout cards should be used as a modal trigger; WorkoutComponent will be
our modal component. So, just add data-toggle and data-target attributes to the card...

[71]

https://v4-alpha.getbootstrap.com/components/modal/

It's time to apply some style

Our application is fully functional now; it can be used right away. Of course, it is still not perfect.
It lacks validations and some functionality, several requirements have not been implemented yet,
and the most important thing…it lacks beauty! It's all gray, it doesn't have style…we are humans,
we love beautiful things, don't we? Everyone implements styles in their own way. I strongly
recommend that if you want to use this application, please find your own style and theme for it,
and please implement it and share with me. I would love to see it.

As for me, since I am not a designer, I asked my good friend Vanessa
(https://www.behance.net/MeegsyWeegsy) to create a nice design for the ProFitOro application.
She did a great job! Since I was busy writing this book, I had no time to implement Vanessa's
design, therefore I asked my good friend, Filipe (https://github.com/fil090302), to help me with
it. Filipe did a great job as well! Everything looks exactly how Vanessa implemented it. We have
used scss, so it must be familiar to you since we've been using it already in this application as a...

[72]

https://www.behance.net/MeegsyWeegsy
https://github.com/fil090302

Summary

In this chapter, we have finally implemented the workout management page. Now we can see all
the workouts stored in the database and create our own workouts. We have learned how to use
the Google Firebase data storage system and API to store static files and we were able to store
newly created workouts in the Firebase real-time database. We have also learned how to use a
Bootstrap modal and used it to display each workout in a nice modal popup.

In the next chapter, we will do the most important job of every software implementation process
– we will test what we have done so far. We will use Jest (https://facebook.github.io/jest/) to test
our application. After that, we will finally deploy our application and define future work. Are
you ready for testing your work? Then turn the page!

[73]

https://facebook.github.io/jest/

Chapter 9. Test Test and Test
In the previous chapter, we implemented the workout management page. We learned how to use
the Google Firebase data storage mechanism to store static files and we again used the real-time
database to store the workout objects. We used Bootstrap to build a responsive layout for the
workout' management page and we learned how to use Bootstrap's modal component to display
each individual workout in a nice popup. Now we have a totally responsible application. Thanks
to Bootstrap, we had to implement nothing special to have a nice mobile representation. Here's
what adding new workouts looks like on a mobile screen:

[74]

[75]

Adding a new workout on a mobile screen

And this is what our modal looks like on a mobile device:

[76]

[77]

Workout modal displayed on a mobile device

Now it's time to test our application. We are going to use Jest (https://facebook.github.io/jest/) to
build unit tests and run snapshot testing. In this chapter, we are going to do the following:

Learn how to configure our Vue.js application to work with Jest

Test Vuex stores using Jest assertions

Learn how to mock complex objects with the jest.mock and jest.fn...

[78]

https://facebook.github.io/jest/

Why is testing important?

Our ProFitOro application works just fine, doesn't it? We have opened it so many times in the
browser, we have checked all the implemented features, so it just works, right? Yes, that's true.
Now go to your settings page and try to change the values of the timer to something strange. Try
it with negative values, try it with huge values, try it with strings, and try it with empty values…
do you think that can be called a nice user experience?

[79]

You wouldn't like to work during this number of minutes, would you?

Have you tried to create a strange workout? Have you tried to introduce a huge workout name at
its creation and see how it displays? There are thousands of corner cases and all of them should
be carefully tested. We want our application to be maintainable, reliable, and something that
offers an amazing user experience.

[80]

What is Jest?

You know that Facebook guys are never tired of creating new tools. React, redux, react-native
and all this reactive family was not enough for them and they created a really powerful, easy-to-
use testing framework called Jest: https://facebook.github.io/jest/. Jest is pretty cool because it's
self-contained enough for you to not to be distracted by extensive configuration or by looking for
asynchronous testing plugins, mocking libraries, or fake timers to use along with your favorite
framework. Jest is all in one, although pretty lightweight. Besides that, on every run, it only runs
those tests that have been changed since the last test run, which is pretty elegant and nice because
it's fast!

Initially created for testing React applications, Jest turned out to be suitable for other purposes,
including Vue.js applications.

Check out the great talk given by Roman Kuba during the Vue.js conference in June 2017 in
Poland (https://youtu.be/pqp0PsPBO_0), where he explains in a nutshell how to test Vue
components with Jest.

Our application is not just a Vue application, it is a Nuxt application that uses Vuex stores and...

[81]

https://facebook.github.io/jest/
https://youtu.be/pqp0PsPBO_0

Getting started with Jest

Let's start by testing a small sum function and check that it correctly sums two numbers.

The first step would be, of course, to install Jest:

npm install jest

Create a directory test and add a file called sum.js with the following content:

// test/sum.js

export default function sum (a, b) {

 return a + b

}

Now add a test spec file for this function:

// sum.spec.js

import sum from './sum'

describe('sum', () => {

 it('create sum of 2 numbers', () => {

 expect(sum(15, 8)).toBe(23)

 })

})

We need a command to run tests. Add an entry "test" to the package.json file that will call a
command jest:

// package.json

"scripts": {

 //...

 "test": "jest"

}

Now if you run npm test, you will see some errors:

Errors in the test output with when we run tests with Jest

This happens because our Jest is not aware we are using ES6! So, we need to add the babel-jest
dependency:

npm install babel-jest --save-dev

After babel-jest is installed, we have to add a .babelrc file with the following content:

[82]

// .babelrc

{

 "presets": ["es2015"]

}

Aren't you annoyed about your IDE warnings regarding describe, it, and other globals that...

[83]

Testing utility functions

Let's test our code now! Let's start with utils. Create a file called utils.spec.js and import the
leftPad function:

import { leftPad } from '~/utils/utils'

Have a look at this function again:

// utils/utils.js

export const leftPad = value => {

 if (('' + value).length > 1) {

 return value

 }

 return '0' + value

}

This function should return the input string if this string's length is greater than 1. If the string's
length is 1, it should return the string with a preceding 0.

Seems quite easy to test it, right? We would write two test cases:

// test/utils.spec.js

describe('utils', () => {

 describe('leftPad', () => {

 it('should return the string itself if its length is more than 1', () => {

 expect(leftPad('01')).toEqual('01')

 })

 it('should add a 0 from the left if the entry string is of the length of 1', () => {

 expect(leftPad('0')).toEqual('00')

 })

 })

})

Argh...if you run this test, you will get an error:

Of course, poor Jest, it is not aware of the aliases we've been using in our Nuxt application. The ~
notation for it equals nothing! Luckily for us, it is easy to fix....

[84]

Testing Vuex store with Jest

Let's now try to test our Vuex store. The most critical parts of our store to test are our actions and
mutations because they can actually mutate the store's state. Let's start with the mutations. Create
the mutations.spec.js file in the test folder and import mutations.js:

// test/mutations.spec.js

import mutations from '~/store/mutations'

We are ready to write unit tests for our mutation functions.

Testing mutations

Mutations are very simple functions that receive a state object and set some of its attribute to the
given value. Thus, testing mutations is fairly easy—we have just to mock the state object and
pass it to the mutation we want to test with a value we want to set. In the end, we have to check
whether the value has been actually set. Let's, for example, test the mutation setWorkingPomodoro.
This is what our mutation looks like:

// store/mutations.js

setWorkingPomodoro (state, workingPomodoro) {

 state.config.workingPomodoro = workingPomodoro

}

In our test, we need to create a mock for the state object. It doesn't need to represent the complete
state; it needs to at least mock the

[85]

Making Jest work with Vuex, Nuxt.js, Firebase, and
Vue components

It's not the easiest task to test Vue components that rely on the Vuex store and Nuxt.js. We have
to prepare several things.

First of all, we must install jest-vue-preprocessor in order to tell Jest that Vue components files are
valid. We must also install babel-preset-stage-2, otherwise Jest will complain about the ES6
spread operator. Run the following command:

npm install --save-dev jest-vue-preprocessor babel-preset-stage-2

Once the dependencies are installed, add the stage-2 entry to the .babelrc file:

// .babelrc

{

 "presets": ["es2015", "stage-2"]

}

Now we need to tell Jest that it should use the babel-jest transformer for the regular JavaScript
files and the jest-vue-transformer for the Vue files. In order to do so, add the following to the jest
entry in the package.json file:

// package.json

"jest": {

 "transform": {

 "^.+\\.js$": "<rootDir>/node_modules/babel-jest",

 ".*\\.(vue)$": "<rootDir>/node_modules/jest-vue-preprocessor"

 }

 }

We use some images and styles in our components. This might result in some errors because Jest
doesn't know...

[86]

Testing Vue components using Jest

Let's start by testing the Header component. Since it depends on the Vuex store which, in its turn,
highly depends on Firebase, we must do the exact same thing we just did to test our Vuex actions
—mock the Firebase application before injecting the store into the tested component. Start by
creating a spec file HeaderComponent.spec.js and paste the following to its import section:

import Vue from 'vue'

import mockFirebaseApp from '~/__mocks__/firebaseAppMock'

jest.mock('~/firebase', () => mockFirebaseApp)

import store from '~/store'

import HeaderComponent from '~/components/common/HeaderComponent'

Note that we first mock the Firebase application and then import our store. Now, to be able to
properly test our component with the mocked store, we need to inject the store into it. The best
way to do that is to create a Vue instance with the HeaderComponent in it:

// HeaderComponent.spec.js

let $mounted

beforeEach(() => {

 $mounted = new Vue({

 template: '<header-component ref="headercomponent"></header-component>',

 store: store(),

 components: {

 'header-component': HeaderComponent

 ...

[87]

Snapshot testing with Jest

One of the coolest features of Jest is snapshot testing. What is snapshot testing? When our
components are being rendered, they produce some HTML markup, right? It would be really
important that once your application is stable, none of the newly added functionality breaks the
already existing stable markup, don't you think? That's why snapshot testing exists. Once you
generate a snapshot for some component, it will persist in the snapshot folder and on each test
run, it will compare the output with the existing snapshot. Creating a snapshot is really easy.
After you mount your component, you should just call the expectation toMatchSnapshot on this
component's HTML:

let $html = $mounted.$el.outerHTML

expect($html).toMatchSnapshot()

I will run snapshot testing for all the pages inside one test suite file. Before doing that, I will
mock the getters of our Vuex store because there are some pages that use the user object, which
is not initialized, thus resulting in an error. So, create a file gettersMock inside our __mocks__ folder
and add the following content:

// __mocks__/gettersMock.js

export default {

[88]

Summary

In this chapter, we used very hot technology to test our Vue application. We used Jest and
learned how to create mocks, test components, and run snapshot testing with it.

In the next chapter, we will finally see our application live! We will deploy it using Google
Firebase Hosting and provide the necessary CI/CD tooling so our application is deployed and
tested automatically each time it is pushed to the master branch. Are you ready to see your work
live, up and running? Let's go!

[89]

Chapter 10. Deploying Using Firebase
In the previous chapter, we set up the testing framework for our application's code, which will
allow us from now on to cover it with unit tests and snapshot tests. In this chapter, we are going
to make our application live! We will also set up the Continuous Integration (CI) and
Continuous Deployment (CD) environments. Hence, in this chapter we are going to learn how
to do the following:

Deploy to Firebase hosting using Firebase tools locally

Set up the CI workflow using CircleCI

Set up both staging and production environments using Firebase and CircleCI

[90]

Deploying from your local machine

In this section, we are going to deploy our application using the Firebase command-line tools.
We have already done it. Check the Google Firebase documentation for a quick start:
https://firebase.google.com/docs/hosting/quickstart.

Basically, if you haven't yet installed Firebase tools, do it now!

npm install -g firebase-tools

Now switch inside your project's directory and initialize a Firebase project:

firebase init

From the drop-down menu that appears, choose hosting.

Note

It's not really obvious, so keep in mind that to actually choose something from the
list, you have to press Space.

Press Space to select the Hosting feature

After that, select your ProFitOro project from the list and after that, indicate the folder dist for
the build's output directory:

[91]

https://firebase.google.com/docs/hosting/quickstart

Type dist for the public directory of your assets

Answer No to the next question and you are done! Make sure that Firebase creates both
firebase.json and .firebaserc files in your project's folder.

This is what the firebase.json file looks like:

// firebase.json

{

 "hosting": {

 "public": "dist"

 }

}

And this is what your .firebaserc file will look...

[92]

Setting up CI/CD using CircleCI

Right now, if we want to deploy our application, we first have to run tests locally to ensure that
everything is okay and nothing is broken and then deploy it using the firebase deploy command.
Ideally, all of this should be automated. Ideally, if we push our code to the master branch,
everything should just happen without our intervention. The process of automated deployment
with automated test checks is called Continuous Deployment. This term means exactly what it
sounds like – your code is being deployed continuously. There are lots of tools that allow you to
automatically deploy your code to production once you hit the button or just push to the master
branch. Starting with the good old but reliable Jenkins, going to Codeship, CloudFlare, CircleCI,
Travis…the list is endless! We will use CircleCI, because it integrates nicely with GitHub. If you
want to check how to deploy with Travis, check out my previous book on Vue.js:

https://www.packtpub.com/web-development/learning-vuejs-2

First of all, you should host your project on GitHub. Please follow the GitHub documentation to
learn how to...

[93]

https://www.packtpub.com/web-development/learning-vuejs-2

Setting up staging and production environments

You probably know that it's not very good practice to deploy to production right away. Even if
the tests pass, we have to check whether everything is right first and that's why we need a staging
environment.

Let's create a new project on the Firebase console and call it profitoro-staging. Let's now add a
new environment to our project using the Firebase command-line tool. Just run this command in
your console:

firebase use –add

Select the right project:

Select a newly created profitoro-staging project

Type the alias staging in the next step:

What alias do you want to use for this project? (e.g. staging) staging

Check that a new entry has been added to your .firebaserc file:

// .firebaserc

{

 "projects": {

 "default": "profitoro-ad0f0",

 "staging": "profitoro-staging"

 }

}

If you now locally run the command firebase use staging and firebase deploy after it, your project
will be deployed to our newly created staging environment. If you want to switch and deploy to
your production environment, just run the command firebase use default followed by the firebase

[94]

deploy command.

Now we...

[95]

What have we achieved?

Dear reader, we've been on a huge journey. We have built our responsive application from the
very start until its deployment. We used nice technologies such as Vue.js, Bootstrap 4, and
Google Firebase to build our application. Not only did we use all these technologies and learn
how they play together, we actually followed the whole process of software development.

We started from the business idea, definition of requirements, definition of user stories, and
creation of mockups. We continued with the actual implementation – both frontend and backend.
We did thorough testing using Jest and we ended up with the deployment of our application into
two different environments. Even more than just a deployment – we've implemented a CD
strategy that will perform the deployment process for us automatically.

The most important thing – we've ended up with a fully functional application that will allow us
to manage our time during work and stay fit!t live:

https://profitorolife.com/

I even created a Facebook page:

https://www.facebook.com/profitoro/

If you liked the ProFitOro logotype, send some love and thanks to...

[96]

https://profitorolife.com/
https://www.facebook.com/profitoro/

Summary

In this chapter, we used CircleCI and Firebase to guarantee continuous quality of our
continuously deployed software. As I already mentioned, it's so nice to see something that you've
created from scratch up and running!

However, our work is not finished yet. There are so many improvements to make. We need
validations. We need to write more tests to increase our code coverage! We need more workouts
and we need them to look beautiful. We probably need some back office where someone
responsible can check every added workout and approve it before it actually ends up in the list of
workouts visible to everyone.

We need a proper statistics page with some beautiful graphics. We need to optimize the image
rendering. We need to show more than one picture for each of the workouts. We probably need
to add video support for the workouts. We also need to work a bit on the workout screen that
appears once the Pomodoro working timer is over. Right now, it looks like this:

There are a lot of buttons here! None of them actually works :(

There are three buttons and none of them work.

So, as you can see, although we have finished the book and...

[97]

Index

A
accounting

about / AAA explained
actions

defining / Defining actions and mutations
alert component

reference / Combining Vue.js and Bootstrap continued
anonymous user

managing / Managing the anonymous user
application

deploying / Deploying your application
scaffolding / Scaffolding the application

asynchronous testing
Jest, using / Asynchronous testing with Jest – testing actions

auth / AAA explained
authentication

about / AAA explained
working, with Firebase / How does authentication work with Firebase?

authentication, Firebase documentation
reference / Updating a user's profile

authentication API, Firebase
reference / How to connect the Firebase authentication API to a web application

authentication UI
enhancing / Making the authentication UI great again

authorization
about / AAA explained

[98]

B
Bootstrap

used, for adding form / Adding a form using Bootstrap
about / Bootstrap
reference / Bootstrap
functionalities / Bootstrap
components / Bootstrap components
utilities / Bootstrap...

[99]

	Chapter 1. Please Introduce Yourself – Tutorial
	Chapter 1. Please Introduce Yourself – Tutorial
	Chapter 2. Under the Hood – Tutorial ExplainedIn the previous chapter, we built a simple single-page application from scratch. We used Vue.js to implement the application's functionality, Bootstrap to make it beautiful, and Firebase to manage the backend part of the application.In this chapter, we will get to know all these technologies in depth and see how and why they can work nicely together. We will mostly discuss Vue.js since this will be our number one framework to build our application. Then, we will touch on Bootstrap and Firebase to get a basic understanding of how powerful these technologies are. Having said that, in this chapter we will:Discuss the Vue.js framework, reactivity, and data binding. Not only will we cover Vue.js' basics, but we will also dig into topics such as directives, components, routing, and so on.Discuss the Bootstrap framework. We will see what is possible to achieve with it, discuss how it can be useful to lay out an application, and discuss how its com
	Chapter 2. Under the Hood – Tutorial Explained
	Chapter 3. Let's Get StartedIn the previous chapter, we discussed the three main technologies that we will use throughout this book to build our application. We explored a lot about Vue.js; we introduced some of the functionalities of Bootstrap, and we checked what we can achieve using the Google Firebase console. We know how to start an application from scratch using Vue.js. We know how to make it beautiful with the help of Bootstrap, and we know how to use Google Firebase to deploy it to live! What does that mean? It means that we are 100 percent ready to start developing our application!Coding an application is a fun, challenging, and exciting process... only if we know what we are going to code, right? In order to know what we will code, we have to define the concept of the application, its requirements, and its target users. In this book, we will not go through the whole process of design building as for this, you have plenty of other books, because it's a big science.In this book
	Chapter 3. Let's Get Started
	Chapter 4. Let It Pomodoro!The previous chapter ended with a nice set of mockups for the ProFitOro application. We have previously defined what the application should do; we have also determined an average user profile, and we are ready to implement it. In this chapter, we will finally start coding. So, in this chapter, we will do the following:Scaffold ProFitOro using vue-cli with the webpack templateDefine all the needed application's componentsCreate placeholders for all the componentsImplement a component that will be responsible for rendering the Pomodoro timer using Vue.js and BootstrapRevisit the basics of trigonometric functions (you were not expecting that, right?)
	Chapter 4. Let It Pomodoro!
	Chapter 5. Configuring Your PomodoroIn the previous chapter, we implemented the main feature of our ProFitOro application – the Pomodoro timer. We even added a hardcoded workout, so we can exercise during our breaks. Actually, I already started using ProFitOro. While I'm writing these words, the Pomodoro clock counts down – tick tick tick tick.In this chapter, we are going to explore the Firebase Realtime Database's possibilities and its API. We are going to manage storing, retrieving, and updating usage statistics and configuration of our application. We will use the Vuex store to bring the application's data from the database to the frontend application.To bring this possibility to the UI, we will use Vue's reactivity combined with the power of Bootstrap. Thus, in this chapter we are going to implement the statistics and settings ProFitOro components using:Firebase Realtime DatabaseVue.js reactive data bindings and Vuex state managementThe power of Bootstrap to make things responsive
	Chapter 5. Configuring Your Pomodoro
	Chapter 6. Please Authenticate!In the previous chapter, we connected our ProFitOro application to the real-time database. Whenever a user updates the Pomodoro timer settings, these are stored in the database and immediately propagated between the components that use them. Since we had no authentication mechanism, we had to use a fake user in order to be able to test our changes. In this chapter, we are going to have real users!We will use the Firebase authentication API in this regard. So in this chapter, we are going to do the following:Discuss the meaning of AAA and the difference between authentication and authorizationExplore the Firebase authentication APICreate a page for sign-in and login, and connect it with the Firebase authentication APIConnect the user's settings with the user's authentication
	Chapter 6. Please Authenticate!
	Chapter 7. Adding a Menu and Routing Functionality Using vue-router and Nuxt.jsIn the previous chapter, we added a very important feature to our application – authentication. Now, our users are able to register, log in to the application, and manage their resources once they are logged in. So, now they can manage the configuration of the Pomodoro timer and their account's settings. They also have access to their statistics data once they are logged in. We have learned how to use Firebase's authentication API and connect the Vue application to it. I must say, the previous chapter has been extensive in learning and a very backend oriented chapter. I enjoyed it a lot and I hope you enjoyed it as well.Despite having this complex feature of authentication and authorization, our application still lacks navigation. For simplicity reasons, we are currently displaying all the application's parts on the main page. This is… ugly:Admit it, this is uglyIn this chapter, we are not going to make thin
	Chapter 7. Adding a Menu and Routing Functionality Using vue-router and Nuxt.js
	Chapter 8. Let's Collaborate – Adding New Workouts Using Firebase Data Storage and Vue.jsIn the previous chapter, we learned how to add some basic navigation to the Vue application using both vue-router and Nuxt.js. We have redesigned our ProFitOro application, transforming it into a Nuxt-based application. Now our application is functional, it has an authentication mechanism, and it is navigable. However, it still lacks one of the most important features – workouts. In this chapter, we are going to implement the workout management page. Do you still remember its requirements from Chapter 2, Under the Hood – Tutorial Explained?This page should allow users to see the existing workouts in the database, select or deselect them to be shown up during the Pomodoro breaks, rate them, and even add new workouts. We are not going to implement all these features. However, we are going to implement enough for you to continue this application and finish its implementation with great success! So, in
	Chapter 8. Let's Collaborate – Adding New Workouts Using Firebase Data Storage and Vue.js
	Chapter 9. Test Test and TestIn the previous chapter, we implemented the workout management page. We learned how to use the Google Firebase data storage mechanism to store static files and we again used the real-time database to store the workout objects. We used Bootstrap to build a responsive layout for the workout' management page and we learned how to use Bootstrap's modal component to display each individual workout in a nice popup. Now we have a totally responsible application. Thanks to Bootstrap, we had to implement nothing special to have a nice mobile representation. Here's what adding new workouts looks like on a mobile screen:Adding a new workout on a mobile screenAnd this is what our modal looks like on a mobile device:Workout modal displayed on a mobile deviceNow it's time to test our application. We are going to use Jest (https://facebook.github.io/jest/) to build unit tests and run snapshot testing. In this chapter, we are going to do the following:Learn how to configur
	Chapter 9. Test Test and Test
	Chapter 10. Deploying Using FirebaseIn the previous chapter, we set up the testing framework for our application's code, which will allow us from now on to cover it with unit tests and snapshot tests. In this chapter, we are going to make our application live! We will also set up the Continuous Integration (CI) and Continuous Deployment (CD) environments. Hence, in this chapter we are going to learn how to do the following:Deploy to Firebase hosting using Firebase tools locallySet up the CI workflow using CircleCISet up both staging and production environments using Firebase and CircleCI
	Chapter 10. Deploying Using Firebase

